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A survey of four study areas examining Bacillus cereus
population distributions and soil metal concentrations

by

Robert E. Tucker and John B. McHugh

Abstract

The natural abundance of Bacillus cereus in soils was studied over two mineralized
areas and two unmineralized areas. The B. cereus population distributions were
compared with total metal concentrations and six water extractable ions. The data
indicate there is no observable correlation between B. cereus populations and the metals
examined.

The natural abundance of B. cereus from closely spaced samples within a single
environmental setting often differed by an order of magnitude. The population
differences between distinct environments, such as a pine forest and an open, grassy
meadow, are as large as 3.5 orders of magnitude. These B. cereus population
differences could not be attributed to metal concentrations nor water extractable ionic
concentrations.

Introduction

The search for mineral deposits often incorporates new techniques or technologies
that use a variety of subtle chemical or physical characteristics associated with the
mineralization process. The distribution of metal-tolerant plant and fungal species has
been used in mineral exploration with some success, although there are numerous
environmental and physiological characteristics that are not well understood (Cannon,
1960; Brooks, 1972; and Kovalevskii, 1979).

The use of bacteria as a mineral exploration tool has been investigated near sulfur
deposits (Miller, 1983) and precious- and base-metal mineralized areas (Parduhn, 1987;
Parduhn and Watterson, 1984; Tucker, 1987; Tucker and others, 1989; Watterson, 1985;
and Watterson and others, 1983, 1986).

Soil is a complex ecosystem dominated by numerous fungi and bacteria (Brock,
1974). Many kinds of fungi and bacteria compete for the same substrates (Brock, 1974;
and Subba-rao and Alexander, 1985). Fungal-bacterial competition in a typical organic-
rich soil may be minimal due to the large variety of substrate choices. However, in a
stressed environment, competition for substrates will increase. Highly mineralized
areas are examples of a stressed environment where biologically available metal
concentrations in the soil may reach or exceed toxic limits for most organisms.



Elevated concentrations of most heavy metals within a soil greatly disrupts the
natural ecology found in the surrounding unmineralized environment (Brooks, 1972;
Kovalevskii, 1979; Tuovinen and others, 1971; and Watterson and others, 1986) and
frequently causes environmental stresses (Brock, 1974; Ehrlich, 1978; Gottschalk, 1979;
and Kuznetsov, 1963). Yet, many plants, fungi, and bacteria can, through adaptation,
tolerate or even thrive in areas with elevated concentrations of heavy metals (Ballard
and Grassle, 1979; Baross and Deming, 1983; Brierley, 1977, 1978; Cannon, 1960;
Gottschalk, 1979; Lyalikova and Lebedeva, 1984; and Tuttle and others, 1968). In
highly stressed environments, such as arctic tundra or deep sea fumaroles, only a few
types of organisms tend to make the adaptations necessary for survival, but tend to
occur in vast numbers (Ballard and Grassle, 1979; Baross and Deming, 1983; Kushner,
1978; and Nielson and Beck, 1972).

The successful use of B. cereus as a mineral deposit exploration tool depends
greatly on their ability to adapt to, and thrive in, a highly mineralized environment.
The complex physiological and intraspecies interactions are not fully understood but
can be summarized as integrated, multifaceted dependencies: (1) B. cereus require
organic substrates. The nutritional requirements are often met by grazing on a wide
variety of fungi (Mitchell and Alexander, 1963).

(2) The fungi use many chemical and physical defensive strategies to ward off
bacteria (Pollock, 1950; 1967; and Reading and Cole, 1977). One of the most important
chemical defenses is the production of antibiotics. Many of these antibiotics contain the
B-lactam bond.

(3) B. cereus can produce B-lactamase, an enzyme that breaks the B-lactam bond,
which reduces the effectiveness of the antibiotic (Pollock, 1950; 1967; Ogawara, 1981;
and Watterson and others, 1968). B. cereus produces at least two varieties of B-
lactamase (which undoubtedly allows it to graze on a wide variety of fungi).

(4) Penicillin degrades into penicillamine, a strong metals-chelating agent (other
B-lactam antibiotics undoubtedly form similar chelating agents).

(5) Bacteria, fungi, and other plants (which supply detrital and dissolved organic
material to the soil) must be resistant to the effects of biologically available heavy
metals. Studies with B. cereus have shown that heavy-metal resistance and B-lactamase
production are transmitted on the same plasmid (Watterson and others, 1986). These
characteristics confer survivability traits to B. cereus within a mineralized environment
where the number of adaptable species is decreasing and intraspecies' competition for
diminishing substrate resources is greatly increasing.

(6) For B. cereus to be effectively used as an exploration tool, the mineralized area
must be an environment in which total number of organisms or other measurable
physiological responses to this environment can be easily measured and compared to



these same responses or traits in an unmineralized environment. Two factors that
facilitate the use of B. cereus as an exploration tool are: (a) the bacteria form spores that
are long lived in the soil and geochemical samples, and (b) the culture assay is nearly
species specific and easy to conduct and interpret.

The natural population distribution of B. cereus was examined over four distinctly
different environments. The first study area consists of unmineralized pine forest and
meadow environments. The second study area is in an unmineralized high desert
environment near Carson City, Nevada. The third study area is located in an
extensively hydrothermally altered area west of Virginia City, Nevada. The soil metal
contents were similar in areas 2 and 3. The fourth study area is located on the Pacific
Coast, north of Santa Cruz, California. This area contains a metal sulfide-rich zone,
exposed along the cliffs, that is cross-cutting unmineralized mudstones and covered by
stabilized dunes. These areas were chosen for study because of their differing
geochemical histories and to compare the B. cereus population distributions within each
environment.

Sample Collection

Four study areas were chosen for the examination of the natural abundance of B.
cereus. In study area 1, 18 samples were collected, 28 samples were collected in study
area 2, 21 samples were collected in study area 3, and 10 samples were collected in
study area 4. At each site, the litter and the top 1 cm of soil were removed from the
surface in an area some 20 cm in diameter. The soil was loosened to a depth of
approximately 10 cm and hand mixed. Approximately 400 to 500 g of soil were placed
in a cloth or paper bag and allowed to air dry. The dry soil wad disaggregated and
sieved to minus-80 mesh. The minus-80-mesh fraction was used for all analytical
procedures. The samples were collected during the summer of 1985.

Analytical Procedures
A. Geomicrobiology

The culture plate tests for Bacillus cereus were conducted using a nearly species-
specific egg yolk agar culture medium (table 1, Watterson, 1985). The culture method
is summarized in table 2. All water blanks, agar medium, and ceramic egg yolker were
autoclaved at 121 °C for 15 min. The agar was kept in a 45 °C water bath and used
within a few hours of preparation. The eggs were surface sterilized with 70 percent
ethanol and aseptically added to the ceramic yolker in a sterile, laminar flow hood.

The egg white was removed using the ceramic egg yolker, then 5 mL portions of the
yolk were slowly added to sterile, 250-mL portions of agar medium.

Culture plates were inoculated using a 1-mL aliquot of the 10-fold serial dilutions
(table 2). The test solution was added to the center of a petri dish, gently swirled, and



Table 1.--Selective egg yolk agar used for Bacillus cereus population studies

[L, liter, mL, milliliter, g, gram]

1.0 g KoHPO4

0.2 g MgSO4 7H,O

0.01 g FeSO4 7H,>O

0.01 g CaCl2 All ingredients added to 1 L of
deionized water, stirred well, then

1.0 g glucose divided equally into 250-mL glass
bottles containing agar.

1.0 g NH4Cl

0.1 g yeast extract

5.0 g trisodium citrate

Add 3-g agar to each of 4,
250-mL glass bottles.

5-mL egg yolk per 250-mL
agar, added at the time of
plate pouring.




Table 2.--Procedure for the preparation of samples for Bacillus cereus culture plate assay

[mL, milliliter; g, gram; °C, degree Celsius; CFU,colony-forming unit]

Step 1. Add 1 g of soil to 9 mL sterile DI water blank.

Step 2. Place tubes in a mechanical shaker for 10 min.

Step 3. Place tubes in a 90 °C water bath for 1 min.

Step 4. Remove tubes, quickly invert and place in cool water.

Step 5. Centrifuge at 1,200 rpm for 3 min.

Step 6. Make 10-fold serial dilutions in distilled water, usually 3.

Step 7. Beginning at the lowest dilution, add 1 mL of solution to a petri dish.

Step 8. Add approximately 8 mL of egg yolk agar to the petri dish directly on top of
the 1 mL inoculum and swirl gently.

Step 9. Allow agar to solidify, invert, and allow to develop at 22-29 °C for about 18 h.

Step 10. Count colonies: plates with less than 30 CFU or greater than 300 CFU may not
accurately reflect the population density of B. cereus in the soil sample.

Step 11. Average the number of CFU from the serial dilution plate counts.




about 8 mL of agar were poured directly on the solution and again swirled gently. The
agar plates were allowed to cool, inverted, and incubated at room temperature for 18 h.

Population counts or colonies are a measure of one spore or one clump of spores
that form a single colony, termed a colony-forming unit (CFU). The colonies form
distinctive, diffuse white zones in the egg yolk agar due to extracellular enzymatic
action. B. cereus var mycoides is identified by its branching growth.

Total Bacillus spp. populations were determined using a minimum salts medium
(table 1) without the trisodium citrate or egg yolk. The fungalcide cycloheximide was
added to the medium. The culture plates were incubated at 37 °C for approximately 48
h. The colonies appear as small, light tan or buff discus-shaped growths within the
medium or circular colonies on the agar surface.

Bacterial assays should be viewed as a qualitative measure of the actual bacterial
population within a sample. A factor of two variation between duplicate assays is
generally acceptable. To maximize assay reproducibility, the lowest dilution factor that
contains between 30 and 300 CFU/g should be used. Serial dilutions also help evaluate
the assay techniques. Averaging results from several determinations may be useful.
Many samples in the four study areas have bacterial counts less than 30 CFU/g in the
1:10 dilution. These populations are below the desired 30 CFU/g count, but are
generally reproducible and are listed.

The results of duplicate analyses for two samples are given in table 3. The
duplicate assays (A, B, C, etc.) were prepared separately from the original soil sample.
The five duplicates listed for the 1:100 dilution represent a duplicate assay from that
particular serial dilution. In sample ANS, the 1:10 and 1:100 dilutions give very similar
population ranges (2,300 to over 3,000 CFU/g and 2,000 to 4,500 CFU/g, respectively)
and show good agreement between the serial dilutions for each sample.

The results for sample TC2 are consistent within each serial dilution. The 1:1,000
dilution does not show the expected 10-fold reduction in bacterial colonies. This may
reflect a separation of clumped spores, creating more colony-forming units in the lower
dilution. Similar assay reproducibility problems are discussed in Parduhn (1987).

There are numerous factors that contribute to the population variations in this
assay technique. Some of the physical factors contributing to population variations
include the extremely small size of the bacterial spore, their ability to clump together,
the often small population in some soils, and the presence of micro-environmental
spheres within a soil. To minimize these effects, a large quantity (1 g) of well-dried,
thoroughly disaggregated and well-mixed soil of at least minus-80 mesh should be
used. Further studies into these factors are discussed in Parduhn (1987).



Table 3.--Results of replicate analyses for Bacillus cereus from two soil samples

Sample dilution
1:10 1:100 1:1000
A B

study area 4

AN5 A 230 34 - 3
B 280 39 39 2
C 270 26 32 4
D 260 29 45 2
E 230 41 30 5
F >300 30 20 5
G 280 34 - 3
H 260 30 - 3
I 290 36 - 6
J 260 22 - 4

study area 1

TC2 A TNC* 165 41
B TNC* 172 50
C TNC* 166 39
D TNC* 130 43

*TNC denotes too numerous to count (>300 CFU/g).



Positive egg yolk culture tests have been noted for some strains of B. anthracis and
B. thuringiensis (Watterson, 1985). These two bacteria may be variants of B. cereus
(Gordon, 1973). B. anthracis and B. thuringiensis are rarely found in nonagricultural
soils. In rare instances, B. cereus can cause ocular damage and is a causative agent of
gastroenteritis (1). All cultured plates were considered a potential biohazard and were
autoclaved before disposal.

B. Water Extraction of Soils

Water-leach extractions of the soil samples were used to examine the
concentrations of some metals that may be readily available within the soil
environment. One gram of soil was placed in a test tube with 10 mL of deionized
water, thoroughly mixed (vigorous hand shaking) and placed on its side. The soil was
resuspended every other day by vigorously hand shaking the test tube. Time-phased
dissolution experiments indicated equilibrium was reached in 5 to 7 days (Tucker,
1987). At the end of 7 days, the samples were centrifuged and the supernatant was
placed in a clean test tube. The concentration of Mg, Na, Ca, K, and Zn were
determined by flame atomic-absorption spectrophotometry (Perkin-Elmer Corp., 1976).
The concentration of Ag and Cu were determined by flameless atomic-absorption
spectrophotometry (Perkin-Elmer Corp., 1977).

C. Emission Spectrography

The soils were analyzed for 31 elements by a 6-step d.c.-arc semiquantitative
emission spectrographic method (Motooka and Grimes, 1976). This method measures
elemental concentrations in a sample against standard concentrations. The standard
concentrations are geometrically spaced (1, 2, 5, 10) over any given order of magnitude
of concentration. Elemental concentrations that are estimated to fall between the above
values are assigned values of 1.5, 3, 7 (of the appropriate magnitude). The precision of
the analytical method has been determined to be within one reporting interval 83
percent of the time and within two reporting intervals 96 percent of the time (Motooka
and Grimes, 1976).

Results and Discussion
A. Study Area 1

Study area 1 is located some 8 km north of Allenspark, Colorado, about 800 m east
of CO 7 on Cabin Creek Road (gravel). This area was selected for the examination of
the natural population variation of B. cereus because it is underlain by a uniform,
unmineralized granite. Four distinct ecosystems or environments were identified
within a 250-m by 140-m area (fig. 1). Eighteen samples were collected. Duplicate
samples were collected at two locations within 5 m of each other. Samples 2 and 3, and
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samples 15 and 16 are site duplicates. Samples 3 and 16 were split and analyzed as
separate samples.

There are four rather distinct floral environments identified within the study area:
(1) open meadows containing numerous grasses and wildflowers (sites 2, 3, 5,7, 11,
and 12); (2) forested area with lodge pole and ponderosa pines (sites 1, 6, 14, 15, 16, and
17); (3) marsh or wetland that contains tall grass and willows (sites 8, 9, and 10); and (4)
disturbed areas on gravel roads or barren spots (sites 4, 13, and 18).

B. cereus and total Bacillus were determined for each sample. The population
densities of B. cereus per gram of soil range from less than 10 to 64,000 CFU/g (table 4).
The bacterial assays with less than 30 CFU/g are fairly reproducible and are listed for
comparison. The duplicate location samples 2 and 3 have B. cereus populations of
17,000 and 2,100 CFU/g, respectively, and samples 15 and 16 have populations of less
than 10 and 20 CFU/g, respectively. Duplicate determinations at site 3 are 2,100 and
6,100 CFU/g which is very high (table 4). Duplicate determinations at site 16 are 20
and 40 CFU/g (table 4). The population differences at sites 15 and 16 are within the
normal fluctuations for plate cultures. The population variations at sites 2 and 3 are
rather large considering the apparent uniformity of the meadow environment.

Several biogeochemical studies have indicated that soil metal concentrations can
significantly alter the population densities of B. cereus (Parduhn, 1987; Parduhn and
Watterson, 1984; and Watterson and others, 1986). The concentration of copper and
lead was compared to B. cereus populations (fig. 2). The concentration range for Pb is
15-100 ppm with 13 samples containing 50-70 ppm Pb (table 5). The concentration
range for Cu is 15-30 ppm (table 5). Given the geology, the very small range of the
metal concentrations and the precision of the analytical method, it is very difficult to
distinguish geochemically significant differences or anomalous metal concentrations
that could have affected the observed B. cereus population ranges within the study area.
There are also no apparent correlations with metals such as Be, Mn, La, Y, or Co with B.
cereus.

The concentration of seven water-soluble metals within the soil were determined
(table 6). The concentrations of Ca, Mg, Na, and K were summed and plotted against
B. cereus (fig. 3). There is no definite correlation between the sum of major cations and
B. cereus populations.

The ratios of total Bacillus spp. to B. cereus were calculated (see table 4). The
samples with the lowest ratios are found in samples from meadows and marshy areas.
There is a wide range in the concentration of soluble ions in these samples. Sites with
the highest ratios occur in the forested environment and from disturbed areas. Sample
12 was collected under a lone ponderosa in a meadow 6 m from site 11. Sample 12 has
a greater than two-fold decrease in B. cereus population densities (table 4).

10
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Table 6.--Concentration of water-soluble cations and Bacillus cereus populations from
study area 1, Allenspark, Colorado

[ppm, parts per million; ppb, parts per billion; CFU/g, colony-forming unit per gram]

Sample Ca Mg Na K Zn Ag B. cereus
ppm  ppm  ppm  ppm  ppm  ppb CFU/g
TCO1 200 47 8 84 0.2 <0.5 1,200
02 210 40 18 75 6 <5 17,000
03 285 45 11 68 1.2 7 2,100
03D 295 45 10 76 8 <5 6,100
04 33 8 6 18 <2 <.5 1,400
05 180 32 7 48 <2 <.5 55,000
06 400 100 10 98 2 .6 510
07 390 85 17 95 2 7 64,000
08 910 230 150 98 2 5 12,000
09 160 42 27 24 <2 <5 1,000
10 150 34 24 18 <2 <5 1,000
11 320 69 23 120 2 <.5 8,200
12 435 105 17 200 3 .6 3,700
13 91 24 14 45 <2 <5 1,200
14 72 12 9 23 <2 <5 10
15 95 19 8 22 2 <5 <10
16 135 32 7 52 <2 <5 20
16D 155 31 7 58 <2 <5 40
17 35 15 8 14 2 <5 100
18 85 18 6 16 <2 <5 1,400

Copper was not detected in any of the samples at a 0.5-ppm detection limit.

15



In the forested areas there was only a very thin A horizon, generally less than 2
cm, which directly overlaid the crumbled C horizon. In contrast, the meadow and
marsh sites had very organic-rich soils with an A-horizon depth greater than the 10-cm
sampling depth. The high population densities of B. cereus in organic-rich soils reflects
a high nutrient content. The soils could contain numerous fungi on which the bacteria
graze and (or) high concentrations of readily available dissolved nutrients.

The four floral environments in the study area show population densities of B.
cereus ranging from less than 10 to 64,000 (table 4). The samples from the forest
environment have the lowest populations of B. cereus. Very similar B. cereus
populations occur in the three samples from the barren or sandy environment. The
three samples from the marsh environment show a wide range in B. cereus populations.
The highest B. cereus populations are found in the meadow environment; however,
there is an order of magnitude variation in the B. cereus populations within the
seemingly uniform meadow environment. The population variations may reflect subtle
biochemical differences or the presence of distinct microenvironments within the soil.

The results from this limited study indicate a significant natural variation in B.
cereus populations may occur within a small area underlain by a uniform, unmetallized
rock type. The population of B. cereus within the study area does not appear to reflect
or be greatly dependent on the metal concentrations or water-soluble ions found in the
soils. The observed population variations appear to be influenced by the degree of soil
development. The presence of distinct microenvironments within an apparently
uniform area may explain the large variations of B. cereus between closely-spaced sites.

B. Study Area 2

Study area 2 is located some 16 km east of Carson City, Nevada. This area was
selected because of the uniformity of the underlying welded ash flow tuff and
vegetation types. Twenty-two samples were collected (fig. 4). A basalt flow
unconformably overlies the tuff, to the west of the original traverse line. Six samples
were collected over the basalt. The basalt is weathering very slowly, as indicated by
the angularity of the rock fragments and fresh appearance. The soil is composed
primarily of stabilized loess or wind-blown material.

The sites sampled over the tuff were collected predominantly from the base of a
prominent outcrop. The soil is composed of fine sand-sized material that is
predominantly weathered tuff. A few samples were collected under pifion and juniper
trees, and sage and Mormon tea bushes. All other samples were collected in open
areas. Sparse clumps of grass were found in the open areas but much denser growth
occurs under the scattered bushes. Under the pifion pines, a thick mat of needles had
collected to a depth of some 12-15 cm thick. Under the juniper trees, a layer of needles
some 2-4 cm in thickness had collected. Sites 1 and 2 and sites 17 and 18 are location
duplicates. Samples 2 and 18 were split and both splits analyzed.
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The population densities of B. cereus are low, ranging from less than 10 to 820
CFU/g (table 7). Nineteen samples have population densities less than 30 CFU/g. Six
of eight samples with B. cereus populations greater than 50 CFU/g of soil were collected
under vegetation. Similar plant B. cereus correlations were noted by Parduhn (1987).
Sample 23 was collected from between angular cobbles of basalt.

The metal concentrations are generally low and show small concentration ranges
(table 8). The concentrations of Ag are anomalous for a tuff. The concentration of total
Ag and water extractable Ag (table 9) were plotted versus the B. cereus populations (fig.
5). There are no apparent correlations between total-Ag concentrations and water-
extractable Ag concentrations to B. cereus populations. There are no apparent
correlations with any other metal examined.

B. cereus populations and the sum of the major cations from the water extraction
were examined. The plot is similar to figure 4 showing no definite correlation between
soluble ions and B. cereus populations.

There are only nine samples with Bacillus spp. to B. cereus ratios less than 10,000.
Six of these samples were collected under vegetation, suggesting that B. cereus cannot
effectively compete with other soil microorganisms, or survive in open, exposed soils.

The data plots suggest that vegetation (or presence of organic matter) has a greater
influence on the population density of B. cereus than other factors. There may be other
metals or ions that are more important to the ecology of B. cereus population dynamics
but they have not been identified.

C. Study Area 3

Study area 3 is located approximately 20 km west of Virginia City, Nevada (fig. 6).
This study area was chosen because of its botanical and climatic similarity to study area
2. However, this area has been intensely altered and is near the Comstock Silver
district. The samples were collected along two traverse lines (fig. 6). The analyses
indicated that the soils were not metal rich (table 10).

This study area is underlain by highly altered, welded ash flows that show
abundant iron enrichment and argillation of the host rock. The vegetation has distinct
variations that may be controlled by the geochemical characteristics of the underlying
rocks. The most striking botanical feature is the presence of large barren areas that
contain only widely spaced ponderosa pines. Surrounding the ponderosa islands or
zones are forests of juniper and pifion with sage, Mormon tea, and a variety of grasses.
The ponderosa zones contain virtually no soil and are composed of sand-sized to
cobble-sized angular fragments of the weathered bedrock. A soil has developed over
the rest of the area.
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Table 9.--Concentration of water-soluble cations and Bacillus cereus populations from 28
soil samples collected from study area 2, Carson City, Nevada

[ppm, parts per million; ppb, parts per billion; CFU/g, colony-forming units per gram]

Sample Ca - Mg Na K Zn Ag B. cereus
ppm  ppm  ppm  ppm  ppm  ppb CFU/g
CCo1 145 24 11 45 <0.2 0.7 10
02 83 15 11 50 2 <.5 10
02D 70 12 9 45 <.2 5 <10
03 140 32 22 250 <.2 1.0 30
04 52 16 21 28 <.2 1.3 70
05 100 17 17 67 <.2 .6 <10
06 68 15 11 30 <.2 <5 <10
07 105 26 10 100 3 14 10
08 53 15 9 38 <.2 <.6 <10
09 46 10 11 15 <.2 5 20
10 530 42 22 120 <2 <5 210
11 55 13 10 34 <2 <.5b 10
12 335 58 15 195 <.2 .6 10
13 76 14 10 48 <2 .5 <10
14 350 56 13 310 2 .6 200
15 67 16 10 36 <.2 <.5 <10
16 220 58 17 270 <.2 8 10
17 91 19 21 38 <.2 1.0 10
18 71 18 11 20 <.2 5 <10
18D 66 16 20 24 <.2 1.8 <10
19 48 12 20 30 <.2 1.8 10
20 300 43 13 86 <.2 5 10
21 135 26 13 110 3 5 60
22 75 16 12 38 3 S5 <10
23 105 21 20 32 <2 5 780
24 155 29 15 70 <2 <5 10
25 380 36 26 145 <.2 <.b 820
26 90 19 24 27 <.2 <.5 20
27 205 37 17 140 <.2 1.0 450
28 315 38 22 135 <2 <5 80

Copper was not detected in any of the samples at a detection limit of 0.5 ppm.
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The first sampling traverse line crossed into one of the ponderosa zones, then
crossed back into the pifion-juniper forest. The samples along the second traverse were
collected at 25-m intervals in a level area south of the first traverse line. At the end of
the second traverse line is a highly iron-enriched breccia zone. Line A on figure 6 is the
boundary between the sage-grass flora and the barren ponderosa zone. Virtually no
other plants are found within the ponderosa zone. The rocks are yellow to whitish in
color. There is no soil development on the slopes. Samples 3-7 were collected from
essentially mechanically weathered rock that contained a wide range of particle sizes.
At line B the ponderosa zone ended rather abruptly and pifion pine, sage, and scattered
grass clumps appeared. A low growing, blue-grey ground shrub was also present.
There was a marked increase in soil to the west of line B. At line C there was a distinct
increase in the number of sage bushes and grass clumps. At line D the blue-grey shrub
disappeared and Mormon tea appeared to the west. The rocks were not as altered near
site 8, as in the ponderosa zone. Near site 10, it was possible to see the texture of the
host rock, indicating the intensity of alteration had decreased. Near site 20, the blue-
grey bush and ponderosa pine appeared and sage and grasses greatly decreased in
number.

The ponderosa pine zones are an environmental curiosity. This type of
geobotanical environment occurs in several places in Utah. Geochemical studies on the
Utah sites suggest that the alteration was produced by thermal springs cogenetic with
the emplacement of intrusives. There is geochemical evidence of intrusive
emplacement and extensive hydrothermal activity associated with the Comstock lode
located only a few kilometers to the east of the study area. Geochemical studies at one
Utah site similar to this study area found the ground waters to have pH values less
than 2. A low soil pH in these highly altered zones may account for the sparse
vegetation and low B. cereus populations.

Duplicate site samples were collected at three locations within the study area.
Samples 6 and 7, 10 and 11, and 18 and 19 are site duplicates. The duplicate samples
(numbers 7, 11, and 19) were collected about 2 m from the original sample split and
analyzed as separate samples.

The elemental concentrations from the soils in this study area are very similar to
those in study area 2, except for the absence of Ag in this study area (table 10). The
mean Cu concentrations are 26 and 22 in study areas 3 and 2, respectively. The mean
Pb concentrations are 29 and 57 in study areas 3 and 2, respectively. The metal
concentration differences between the two study areas are not analytically or
geochemically significant. The data results indicate that, although this study area has
been significantly altered, the hydrothermal fluids responsible for the alteration were
not charged with metals. There may be localized metal concentrations in small veins,
but the sample density was too sparse to detect them.
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The population densities of B. cereus and Bacillus spp. vary widely within the study
area (table 11). The culture tests indicate that the ponderosa zone is virtually devoid of
any Bacillus species (table 11, samples 3-7). A similar reduction in Bacillus spp.
population occurs near the breccia zone (table 11, samples 20 and 21).

The results of the water extraction are given in table 12. The plot of B. cereus
versus major soluble cations shows no definite correlation (fig. 7). Examination of
water soluble Zn and Ag concentrations versus B. cereus populations show no
observable correlation (no plot). There is no observable correlation between the ratio of
Bacillus spp. to B. cereus versus major soluble cations (no plot).

With the exception of the ponderosa zone, samples in this study area appear to
have a high amount of organic material and soil formation is common. The
distribution of B. cereus closely follows these qualitative observations. The range of B.
cereus populations along the second traverse (samples 12-19) cannot be adequately
explained on the basis of metal content or major environmental factors. The population
ranges may be due to physiological, chemical, or physical stresses that are not fully
understood.

A comparison of study areas 2 and 3 indicates that the metal concentrations are
analytically and geochemically similar, with the exception of Ag. The B. cereus
populations in both areas show wide ranges. In study area 2, the B. cereus populations
vary between less than 10 to 820 CFU/g. Seventeen samples (61 percent) have B. cereus
populations of 10 CFU/g or less. In study area 3, the B. cereus populations vary
between less than 10 and 1,700 CFU/g of soil. Nine samples have B. cereus populations
of 10 CFU/g or less. There are slightly higher B. cereus populations in area 3, but this
does not appear to be related to metal content or extractable major or minor cations
examined. In study areas 1 and 3, the amount of soil development seemed to have a
significant influence on B. cereus populations. The degree of soil development was
qualitatively more in most of the samples in study area 3 compared to study area 2,
which may account for the higher B. cereus populations in study area 3.

The populations of Bacillus spp. range from 40,000 to greater than 500,000 CFU/g
in study area 2. The mean population is approximately 280,000 CFU/g. Instudy area
3, Bacillus spp. populations range from less than 10 to over one million CFU/g with a
mean population of approximately 250,000 CFU/g. It should be noted that the Bacillus
spp. are greatly reduced over the ponderosa zones in study area 3 (table 11).

The results from the B. cereus plate cultures studied and the geochemical analyses
from study areas 2 and 3 suggest that three factors need to be examined when
comparing population densities of B. cereus found within a study area. (1) The degree
of soil development appears to have a significant impact on the populations of B. cereus.
This finding is in agreement with Parduhn (1987). Samples collected from open areas
in a sandy soil may have much lower B. cereus populations than more developed soils.
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Table 12.--Concentrations of water-soluble cations and Bacillus cereus populations from
21 soil samples from study area 3, Virginia City, Nevada

[ppm, parts per million; ppb, parts per billion; CFU/g, colony-forming units per gram]

Sample Ca Mg Na K Zn Ag B. cereus
ppm  ppm  ppm  ppm  ppm  ppb CFU/g
VvCo1 40 33 75 31 <0.2 <0.5 60
02 400 90 14 125 <2 <5 <10
03 12 22 10 43 <2 <5 <10
04 6 16 12 43 <2 <.5 <10
05 50 17 48 170 3.3 <5 <10
06 12 30 25 84 4 <5 <10
07 20 30 31 68 <.2 <.5 <10
07D 20 29 35 70 2 <5 <10
08 795 150 73 360 1.0 5 <10
09 135 40 20 72 3 <5 20
10 145 58 21 24 <2 <5 250
11 135 47 16 40 <2 <.5 390
11D 135 42 15 41 <.2 <.5 270
12 25 18 13 27 <2 <5 450
13 62 26 24 105 <.2 <5 200
14 200 52 27 85 4 <5 1,700
15 6 28 115 36 <2 5 130
16 29 34 73 42 <2 <5 1,500
17 92 26 12 29 <2 <5 140
18 15 27 310 16 <2 9 130
19 23 24 400 30 2 1.2 250
19D 24 22 380 22 2 1.0 400
20 35 46 35 170 4 .6 <10
21 5 23 14 33 <2 <5 <10

Copper was not detected in any sample at a detection limit of 0.5 ppm.
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Samples collected under vegetation such as Mormon tea, sage, or juniper may have
higher populations of B. cereus than adjacent samples collected in the open. (2) The
population densities of B. cereus are not greatly influenced by the soluble metals
examined in this study. (3) The natural variation of B. cereus population densities often
fluctuates by an order of magnitude, even from closely spaced samples, in soils that are
seemingly within the same geochemical and botanical environment.

D. Study Area 4

Study area 4 is located at Afia Nuevo State Reserve, some 35 km north of Santa
Cruz, California, approximately 2.5 km from the Reserve parking lot. The study area
affords the first access to the beach from the established trail. The area was selected for
study because it contains a metallized fault zone bordered by sedimentary rocks that
are unmetallized. The metallized zone is exposed for about 50 m along the cliff. The
zone contains iron sulfide minerals (predominantly pyrrhotite) occurring as
crisscrossing veinlets up to some 3 cm in width. The surrounding rocks are thick
sequences of limy siltstones and mudstones that dip to the west. The metallized zone
vertically cuts the sedimentary rocks and is unconformably overlain by mudstone.
There are stabilized and moving dunes overlying the horizontal mudstone. Only ten
samples were collected in this study area due to Reserve regulations (fig. 8).

Sites 1, 3, and 4 are located in the gossan, above the unweathered rock containing
sulfides. There are only a few widely spaced plants near these sites. The sample
material is composed primarily of loose and weathered gossan and is not a true soil.
Site 2 is located in the dense gray clay that overlies the gossan. There appeared to be no
alteration within the clay and its horizontal aspect indicates that the clay layer was
deposited after the tilting and alteration of the sedimentary rocks. Sample 5 was
collected from stabilized dune sands that had ice plant cover. Sample 6 was collected
under willows that are growing on stabilized dunes. Samples 7 and 8 were collected
along a small runoff depression cut into the clay. Some grasses are present at site 8; site
7 was barren. Sample 9 was collected from clay on top of the cliffs to the east of the
metallized zone. Some tuffs of grass and a large pampus grass clump are present at the
site. Sample 10 was collected in a wind-swept area of gray-black clay that may be
occasionally reached by high waves.

B. cereus populations range from less than 10 to 5,100 CFU/g (table 13). The
greatest populations of B. cereus occur in samples 5 and 6, collected from stabilized
dune sands. Samples from the gossan and clay soils have B. cereus populations of 10
CFU/g or fewer (table 13).

The metallized zone has slightly higher concentrations of Fe, Be, Co, Cu, Ni, and
Zn compared to the surrounding rocks (table 14). It is probable that unweathered
samples of the metallized zone would have much higher metal concentrations. The
elevated concentrations of Fe, Ti, and Cr in samples 5 and 6 are probably related to the
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Table 13. Results from culture tests for Bacillus cereus and total Bacillus at Afia Nuevo
State Reserve, California

Sample Dilution Total

1:10 1:100 1:1000

ANO1 1 0 0 <10

3 0 0 30

02 1 0 0 10

52 6 0 520

03 0 0 0 <10

220 2 1 2,200

03D 0 0 0 <10

88 (15) 2 0 880

04 1 0 0 10

2 0 0 20

05 264 22 4 2,600

TNC TNC 210 (10) 210,000

06 TNC 51 3 5,100

TNC TNC 300 (11) 300,000

07 0 0 0 <10

108 (6) 3 0 1,100

08 1 0 0 10

TNC 120 12 12,000

09 0 0 0 <10

TNC 160 9 16,000

10 0 0 0 <10

44 (3) 0 0 440

Top lines, B. cereus CFU/g; second line, total Bacillus CFU/g. TNC is too numerous to
count. Number in parentheses represents B. cereus var mycoides CFU/g.
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presence of heavy minerals such as magnetite or illmenite. These minerals are found in
the black sand streaks that are abundant within the dunes. The small concentration
range for most of the elements are geochemically and analytically insignificant. There
appears to be no correlation between heavy-metal concentrations and B. cereus
populations.

The water extraction was performed to determine what effects the proximity of a
highly saline body of water may have on the concentration of major cations within the
soil (table 15). The results indicate that sites in clay or sand have Ca, Mg, and K
concentrations similar to the soils from the other study areas. The concentration of Na
in some samples is elevated compared to the soils from the other study areas. The soils
from the gossan have a significant increase in the concentrations of all four major
cations compared to the surrounding soils. The anomalous concentrations of Ca, Mg,
Na, and K in the gossan zone are probably a function of the chemical and physical
characteristics of the zone. The gossan zone is more permeable than the surrounding
clay layers. Sea water spray or aerosols would tend to soak into the gossan but sit on
the surface of the clay. Any of the salts deposited on the clay surface would be easily
removed by the wind.

The dune areas are composed of rounded mineral grains, predominantly quartz
and some heavy minerals. These minerals are relatively resistant to chemical attack.
Any salts that collected in the dunes would be easily washed out during rains due to
high permeability of the sands.

Previous studies of the gossan zone (Tucker, unpub. data) identified Thiobacillus
and Desulfovibrio in the soils. The presence of Thiobacillus indicates the oxidation of
sulfide minerals releasing sulfuric acid to the soil. The soil pH in the gossan zone was
near 2. The low pH may explain the low populations of B. cereus and Bacillus spp. in the
gossan samples. The effects of low pH on Bacillus spp. in this study area coincides with
the results observed in the ponderosa zone in study area 3. It is apparent that many
unresolved complex geochemical and biogenic processes are contributing significantly
to the observed complexity in the data.

The range of soluble cations is very large and the range of B. cereus populations is
over four orders of magnitude. However, there is no apparent correlation between B.
cereus populations and the sum of the major soluble cations (fig. 9). The ratio of Bacillus
spp. to B. cereus versus the major soluble cations also shows no correlations (no plot).

Interpretations of the B. cereus population data is tentative due to the complexity
observed in the geochemical characteristics of the various sample groups, i.e., gossan,
sand dunes, and clay sediments. Samples from the gossan zone and the clay soils have
population densities of B. cereus of 10 CFU/g or fewer. The population densities of
Bacillus spp. are greater in the clay soils than the gossan, suggesting the clay
environment is more hospitable than the gossan zone. The high-metal content of the
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Figure 9. Distribution plot of Bacillus cereus versus the sum of water soluble Ca, Mg,
Na, and K in study area 4, Afia Nuevo State Reserve, California.
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Table 15.--Concentration of water-soluble cations and Bacillus cereus poulations from 10
soil samples collected in study area 4, Afia Nuevo State Reserve, California

[ppm, parts per million; ppb, parts per billion; CFU/g, colony-forming units per gram]

Sample Ca Mg Na K Zn Cu Ag B. cereus
ppm ppm  ppm ppm ppm  ppm ppb CFU/g

ANO1 3,000 1,500 10,000 180 <0.2 <0.5 1.0% <10
02 210 62 2,200 17 <2 <.5 1.0 10
03 320 590 10,000 220 <.2 <.5 1.3* <10
04 1,100 630 15,000 73 <.2 <5 1.4* 10
05 49 23 130 17 <.2 <5 <.5 2,600
06 430 57 52 80 <2 <5 <5 5,100
07 130 45 840 93 4.0 8 22 <10
08 210 65 370 16 <.2 <.5 <.5 10
09 180 74 200 52 <.2 <.5 .8 <10
10 240 47 670 12 <.2 <5 <.5 <10

* Sodium concentrations greater than 10,000 ppm may cause a silver interference equal
to 1.3 ppb.
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gossan zone should be a favorable environment for B. cereus. The very high
concentrations of soluble ions, lack of organic substrate, low pH, or other factors appear
to create a very hostile environment that precludes B. cereus survival.

Low populations of B. cereus were found in the clay soils. Chemical analysis of the
clay soils does not suggest they contain a toxic chemical environment, and
qualitatively, the soils appear to have high organic content. It appears that some set of
physical and chemical characteristics, such as oxygen content, permeability, amount of
water, organic compounds, chemical species, etc., adversely affect B. cereus.

The samples with the highest B. cereus and Bacillus spp. populations are from
stabilized dunes. The dune sample is composed of highly sorted, refractory mineral
grains. There is some organic detritus present under the willows. These soils are
highly aerated and somewhat damp. The environmental conditions would enhance the
growth of many fungi, aerobic bacteria, and B. cereus.

The number of samples in this study area is very small, which precludes definite
conclusions. However, the B. cereus assay results seem to be ineffective at delineating
the metallized zone. More study is required to better understand the interactions
between soil characteristics, such as pH and organic matter content, and B. cereus
population dynamics.

Conclusions

Four study areas were selected to examine the natural population density of B.
cereus. Geochemical characteristics of the soil samples were examined with respect to
possible effects metal concentrations would have on B. cereus populations. The
concentrations of 31 elements were determined using 6-step d.c.-arc semiquantitative
emission spectrographic analysis. The concentrations of water extractable Ca, Mg, Na,
K, Zn, Cu, and Ag were determined by atomic absorption analyses.

In the four study areas examined, the data results indicate there is no observable
correlation between B. cereus populations and the concentration of total soil metals
examined in this study. There is no apparent correlation between the concentration of
soluble metal ions and the populations of B. cereus. There may be some chemical
parameter of the soil not measured that significantly affects the distribution of B. cereus
populations and would explain the population fluctuations. There is a strong
qualitative correlation between the degree of soil development and B. cereus
populations in all study areas. Low soil pH, from organic sources such as pine forests
and inorganic sources such as weathering sulfides, appears to have an adverse effect on
B. cereus populations.

The population variations within a sample may fluctuate by a factor of two.
Samples from what appears to be a single environmental setting exhibit B. cereus
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population variations in the range of an order of magnitude. This indicates that subtle
population differences will be very difficult to detect. B. cereus population ranges of
about four orders of magnitude between distinct environments, such as forest and
meadow, were deserved. These population differences could not be attributed to total
metals or water-extractable ion concentrations in the soil. The very high, naturally
occurring, population variations suggest the problematical nature of using B. cereus to
detect zones of mineralization. These results indicate that the relationships between
many geochemical and physical soil characteristics and the population dynamics of B.
cereus are only poorly understood.
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